4 Feb 2010

Identifikasi tanda tangan

Sistem Biometrik dan Tanda-tangan
Biometrik merupakan pengembangan dari metode dasar identifikasi dengan menggunakan karakteristik alami manusia sebagai basisnya. Pada Penelitian ini, karakteristik yang dibahas adalah pola tanda-tangan. Hal ini disebabkan karena tanda-tangan memiliki tingkat akurasi untuk identifikasi yang cukup tinggi. Perbandingan tingkat akurasi teknologi biometrik dengan mengacu perbandingan antara kesalahan proses identifikasi dengan ketepatan proses identifikasi dalam kondisi yang acak dapat dilihat pada Tabel 1.

TABEL 1 PERBANDINGAN KEAKURATAN TEKNOLOGI BIOMETRIK








Segmentasi Citra
Segmentasi dilakukan untuk memilih dan memisahkan objek dari citra secara keseluruhan. Objek tersebut merupakan bagian dari citra yang akan diolah atau dianalisis. Salah satu teknik segmentasi berdasarkan intensitas warna adalah metode klasterisasi rerata (mean clustering). Pada klastering rerata, dilakukan pembagian gambar dengan membagi histogram citra. Pertama-tama mencari intensitas maksimum dan minimum yang dipergunakan dalam citra. Dari intensitas minimum ke maksimum, dilakukan pembagian sejumlah N klaster (kelompok). Misalnya pembagian citra histogram menjadi dua klaster (N=2), hal ini dapat dilihat pada Gambar 1. N ini menentukan jumlah obyek yang diharapkan ada pada gambar. Setelah dilakukan pembagian, histogram akan terbagi menjadi bagian-bagian yang dinamakan klaster (kelompok). Kemudian pada gambar dilakukan penelusuran untuk seluruh titik. Setiap titik akan digolongkan ke klaster yang terdekat sehingga hasil akhir dari proses ini ialah, jumlah warna pada gambar menjadi N. Proses terakhir ialah mencari hasil rerata (mean) dari seluruh titik pada setiap klaster, kemudian mengganti warna seluruh titik didalam grup-grup tersebut dengan rata-rata dari grup masing-masing. Hasil pembagian dari proses klasterisasi, seluruh titik pada setiap klaster diganti dengan rerata klaster sehingga menghasilkan gambar dengan 2 warna. Hal ini dapat dilihat pada Gambar 2
















Gambar 1 Pembagian 2 Cluster (N=2)












Gambar 2 Hasil Clustering dengan 2 warna

Ekstraksi Ciri
Setelah citra mengalami tahap segmentasi, tahap selanjutnya adalah melakukan ekstraksi ciri-ciri tertentu pada citra. Pada tahap ini, citra dibagi-bagi menjadi beberapa baris M dan kolom N. Setiap kotak dilakukan pemayaran piksel untuk menentukan piksel dengan nilai intensitas rendah yang ada didalamnya. Dalam hal ini, intensitas rendah identik dengan warna gelap, misal hitam. Apabila kotak tersebut bernilai intensitas rendah (hitam) maka kotak akan bernilai 1, sedangkan apabila bernilai intensitas tinggi (putih) maka kotak akan bernilai 0. Data yang disimpan dalam bentuk matriks M×N sebagai masukan data untuk diproses melalui jaringan saraf tiruan perambatan balik. Gambar 3 menunjukkan proses ekstraksi ciri citra tanda-tangan dengan menghasilkan keluaran berupa data biner (0,1) yang akan digunakan sebagai masukan pada jaringan saraf tiruan perambatan-balik.






Gambar 3 Proses ekstraksi ciri Jaringan Saraf Tiruan Backpropagation

Tidak ada komentar:

Poskan Komentar

Tinggalkan Komentar :